Logical Design
Project Name

Logical Design
The Logical Design presents a complete and unambiguous definition of the solution’s logical elements from the user and functional point-of-view. This design is written without the encumbrances of architecture, technology, and infrastructure.
The paragraphs written in the “Comment” style are for the benefit of the person writing the document and should be removed before the document is finalized.

September 17, 2008
Revision Chart

This chart contains a history of this document’s revisions. The entries below are provided solely for purposes of illustration. Entries should be deleted until the revision they refer to has actually been created.

The document itself should be stored in revision control, and a brief description of each version should be entered in the revision control system. That brief description can be repeated in this section.

	Version
	Primary Author(s)
	Description of Version
	Date Completed

	Draft
	TBD
	Initial draft created for distribution and review comments
	TBD

	Preliminary
	TBD
	Second draft incorporating initial review comments, distributed for final review
	TBD

	Final
	TBD
	First complete draft, which is placed under change control
	TBD

	Revision 1
	TBD
	Revised draft, revised according to the change control process and maintained under change control
	TBD

	etc.
	TBD
	TBD
	TBD

Preface

The preface contains an introduction to the document. It is optional and can be deleted if desired.

Introduction

The Logical Design presents a complete and unambiguous definition of the solution’s logical elements from the user and functional point-of-view. This design is written without the encumbrances of architecture, technology, and infrastructure. A logical design identifies and defines all the objects and their behaviors, attributes, and relationships within the scope of the solution.

The goal of the logical design is to convert the contents of the usage scenarios and conceptual design into an abstract model that identifies the cooperating logical components that support the solution.

The logical design does not identify specific technologies. The goal is to analyze and understand the solution’s functionality before making any technology commitments. If the final design includes custom components (components not provided in available solutions or products), including information about them in the logical design facilitates their translation directly into the physical design.
Justification

Presenting a logical design to solution stakeholders early in the development process elicits user feedback on the proposed solution while minimizing the distractions of the design’s physical aspects.

The documentation of a logical design is valuable not only during development but once the solution is operational. When changes are proposed to the requirements of a deployed solution, it is easier to analyze those changes using the logical design in order to estimate the changes’ impact on the physical solution.

The development team will use the logical design to 1) prove the solution meets functional requirements and 2) recognize logical design errors. The logical design is also important input for developing test plans and test cases.
Team Role Primary

Program Management is responsible for ensuring that the logical design document is completed. Development will have the primary responsibility for creating the document’s content.
Team Role Secondary

Product Management will review and understand the Logical Design in order to convey it to parties external to the team and to ensure that it aligns with initial project sponsor requirements. User Experience will review the design to ensure user requirements are met. Release Management will participate both in content creation and review along with development to ensure that operational, deployment, migration, interoperability and support needs are addressed within the designs. Test will review the logical design to ensure test plans are in place to validate it.
Contents

New paragraphs formatted as Heading 1, Heading 2, and Heading 3 will be added to the table automatically. To update this table of contents in Microsoft Word, put the cursor anywhere in the table and press F9. If you want the table to be easy to maintain, do not change it manually.

51.
Introduction

1.1
Logical Design Summary
5
1.2
Definitions, Acronyms, and Abbreviations
5
1.3
References
5
2.
Objects
6
3.
Behaviors
7
4.
Attributes
8
5.
Relationships
9
6.
Index
10
7.
Appendices
11
7.1
Creating the Logical Design
11
7.1.1
Unified Modeling Language
11
7.1.2
Objects
11
7.1.3
Behaviors
12
7.1.4
Attributes
12
7.1.5
Relationships
13

List of Figures

New figures that are given captions using the Caption paragraph style will be added to the table automatically. To update this table of contents in Microsoft Word, put the cursor anywhere in the table and press F9. If you want the table to be easy to maintain, do not change it manually.

This section can be deleted if the document contains no figures or if otherwise desired.

Error! No table of figures entries found.
1. Introduction

This section should provide an overview of the entire document. No text is necessary between the heading above and the heading below unless otherwise desired.

1.1 Logical Design Summary
Provide an overall summary of the contents of this document. This should include the criteria by which the design was established and how it was validated.
Some project participants may need to know only the plan’s highlights, and summarizing creates that user view. It also enables the full reader to know the essence of the document before they examine the details.

1.2 Definitions, Acronyms, and Abbreviations

Provide definitions or references to all the definitions of the special terms, acronyms and abbreviations used within this document.
1.3 References

List all the documents and other materials referenced in this document. This section is like the bibliography in a published book.

2. Objects
The Objects section identifies all objects that exist within the solution domain. See the Appendix for examples of objects.

Objects are the foundation for the logical design – all other elements are identified and defined from the set of objects.

3. Behaviors

The Behaviors section identifies for each object the set of behaviors of that object. See the Appendix for examples of behaviors.

Object behaviors enable the identification of attributes, as they describe the functionality of the objects.

4. Attributes

The Attributes section identifies for each object/behavior pair, the specific attributes that must be tracked. See the Appendix for examples of attributes.

Attributes define the contents of the solutions’ databases. They define what information must be managed to satisfy the user’s activities.

5. Relationships

The Relationships section defines the relationships among the objects. See the Appendix for examples of object relationships.

Object relationships describe the flow of activities through a solution and provide input to the design of the database and solution logic.
6. Index

The index is optional according to the IEEE standard. If the document is made available in electronic form, readers can search for terms electronically.

7. Appendices

Include supporting detail that would be too distracting to include in the main body of the document.
7.1 Creating the Logical Design

The team uses the usage scenarios previously developed to identify these objects and their relationships, behaviors, and attributes. The team performs the following tasks:

1. Identify the user, business, and data objects in the scenario

2. Identify the behaviors of these objects

3. Identify the attributes, or properties, of the objects

4. Identify the logical relationships between the objects

7.1.1 Unified Modeling Language

The Unified Modeling Language (UML) is a tool used to illustrate how solutions work. It can be very useful in describing a solution visually in order to analyze it more fully. Using UML is an easy way to diagram components, interactions, relationships, and more. Often, UML is used to facilitate the analysis of the logical design.

7.1.2 Objects

When analyzing a usage scenario, the first task is to identify the objects in it. An object is generally a business entity or process that appears in the usage scenario. For example, in the following paragraph, the objects are identified in bold:

The user selects a catalog to browse. The categories and products in the root of the selected catalog are displayed. The user can then select a product to view its details or select a category and view the products and sub-categories in the selected category.

In this scenario, the following objects are used:

· User

· Catalog

· Categories

· Product

· Products

Below is a UML diagram that illustrates the objects identified in this example.

[image: image1.png]User

Catabog

Categories

Product

Products

These five objects serve as the base objects for this scenario; however, there are situations when additional objects are needed for the scenario to function, even though these objects are not specifically listed in the scenario. You can identify these additional objects by examining behaviors that have no apparent objects associated with them. To identify these objects, you must first identify the behaviors.

7.1.3 Behaviors

After identifying the obvious set of objects, the next step is to identify their respective behaviors, also known as methods or services.

To identify object behaviors, you must first evaluate what is being done in the scenario. For example, in the following paragraph, the actions are identified in bold:

The user selects a catalog to browse. The categories and products in the root of the selected catalog are displayed. The user can then select a product to view its details or select a category and view the products and sub-categories in the selected category.

The first thing that happens is that a user selects a catalog. The figure below is a UML diagram that illustrates the User object as having the Select Catalog behavior.

[image: image2.png]User

‘Sekect Catalog.

Behaviors that have no apparent objects associated with them must be derived from the scenario. It follows that because the user selects a catalog, there must be some sort of mechanism that allows a catalog to be selected from a list of catalogs. You could then logically assume that a Catalogs object, which manages the collection of Catalog objects, is present. You should add this new object to the list of objects that were defined.

After you define the Catalogs object, you can define the first action as Select Catalog and this behavior belongs to the Catalogs object.

You then need to continue to evaluate each sentence of the scenario until you identify all of the requisite objects and their associated behaviors.

7.1.4 Attributes

After identifying the behaviors, the next step is to identify the attributes (also known as the properties) of the objects that have been defined. Attributes are elements that the solution needs to track. They are placeholders in which data is retained or persisted.

Identify attributes by analyzing the behaviors in the scenario and extracting what elements have to be tracked or persisted. For example, in the previous section, the usage scenario specifies that the user is able to view a product. When a product is viewed, those elements shown to the user are attributes of the product. For example, if the business requires that the product description and price be shown, those elements become attributes that are identified on the objects.

The figure below is a UML diagram that illustrates the User object as having the attribute Name.

7.1.5 Relationships

After defining the objects, their behaviors, and attributes, the next step is to identify relationships. Relationships are logical associations between objects.

To identify relationships, analyze how the objects interact with each other. For example, the Catalogs object has a relationship with the Catalog object because the Catalogs object, which manages the collection, contains Catalog objects.

Another type of relationship, inheritance, deals specifically with the situation where one object defines another. For example, if the solution being designed was going to sell food and books but the designers wanted to logically differentiate between them, then a relationship might be defined where both Book and Food objects are a type of Product object. That is, they both inherit from the Product object.

Logical Design.doc (06/18/03)
Page 1

