Usage Scenarios
Project Name

Usage Scenarios
The Usage Scenarios document describes the set of activities that the solution will address and support. The Appendix contains guidelines on how to develop this information.
The paragraphs written in the “Comment” style are for the benefit of the person writing the document and should be removed before the document is finalized.

September 17, 2008
Revision Chart

This chart contains a history of this document’s revisions. The entries below are provided solely for purposes of illustration. Entries should be deleted until the revision they refer to has actually been created.

The document itself should be stored in revision control, and a brief description of each version should be entered in the revision control system. That brief description can be repeated in this section.

	Version
	Primary Author(s)
	Description of Version
	Date Completed

	Draft
	TBD
	Initial draft created for distribution and review comments
	TBD

	Preliminary
	TBD
	Second draft incorporating initial review comments, distributed for final review
	TBD

	Final
	TBD
	First complete draft, which is placed under change control
	TBD

	Revision 1
	TBD
	Revised draft, revised according to the change control process and maintained under change control
	TBD

	etc.
	TBD
	TBD
	TBD

Preface

The preface contains an introduction to the document. It is optional and can be deleted if desired.

Introduction

The Usage Scenarios document describes the set of activities that the solution will address and support. These activities are described in terms of what the user wants the solution to do and what other interfacing applications and systems need the solution to do. This information is expressed in terms of actors (users in a specific situation), actions (functions), paths (normal, alternative and exceptional ways of moving from one state to another within a function), conditions (what must occur to move down the path), and results (output).
Justification

Use cases are an important expression of why the solution is needed and what it must do. This information is the description of how the solution must behave in the business environment to meet both business and the user’s functional needs.
Team Role Primary

Program management is responsible for ensuring that the Usage Scenarios document is completed. Development has the primary responsibility for creating the document’s content. User Experience is responsible for ensuring that the document is developed by acknowledging all the relevant user roles and gathering the user perspectives and needs for each of those roles.
Team Role Secondary

Product Management will review and understand the Usage Scenarios in order to convey those to parties external to the team and to ensure that those scenarios are represented according to initial project sponsor requirements. Test will review the Usage Scenarios to ensure test plans are in place to validate them. Release Management will review the document to ensure operational, deployment, migration, interoperability and support needs are addressed.
Contents

New paragraphs formatted as Heading 1, Heading 2, and Heading 3 will be added to the table automatically. To update this table of contents in Microsoft Word, put the cursor anywhere in the table and press F9. If you want the table to be easy to maintain, do not change it manually.

41.
Introduction

1.1
Usage Scenarios Summary
4
1.2
Definitions, Acronyms, and Abbreviations
4
1.3
References
4
2.
Actors
5
2.1
<Actor 1: Name>
5
2.2
<Actor 2: Name>
5
2.3
<Actor 3: Name>
5
3.
Use Cases
6
3.1
<Use Case 1: Name>
6
3.2
<Use Case 2: Name>
8
4.
Index
10
5.
Appendices
11
5.1
Guidelines for Constructing Use Cases
11
5.1.1
General Approach
11
5.1.2
Questions to Drive Brainstorming
11
5.1.3
Developing Scenarios
11
5.1.4
Sample Usage Scenario
12

List of Figures

New figures that are given captions using the Caption paragraph style will be added to the table automatically. To update this table of contents in Microsoft Word, put the cursor anywhere in the table and press F9. If you want the table to be easy to maintain, do not change it manually.

This section can be deleted if the document contains no figures or if otherwise desired.

7Figure 3.1: The statechart diagram for the Pay Invoice use case

1. Introduction

This section should provide an overview of the entire document. No text is necessary between the heading above and the heading below unless otherwise desired.

1.1 Usage Scenarios Summary
The Usage Scenarios Summary section lists the use cases this document contains. It also provides a summary of those cases by describing them as a set of activities specific to a business scenario or domain. These use cases will be very specific to your project.

This information will provide the reader with an understanding of the solution’s business context and the scope of this document’s content. Some readers may not need to review the details of every use case but will need to know that all relevant activities have been accounted for in this document.
1.2 Definitions, Acronyms, and Abbreviations

Provide definitions or references to all the definitions of the special terms, acronyms and abbreviations used within this document. Use the language of the customer.
In the Usage Scenario document, this section serves as the glossary which is useful in reaching a consensus among developers regarding the definition of various concepts and notions. This in turn reduces the risk of misunderstandings in general.
Definitions, acronyms and abbreviations are often derived from a business or domain model, but because it is less formal, it is easier to maintain and more intuitive to discuss with external parties such as users and customers. For ease of maintenance it may make sense to create a separate document or database for this glossary.
1.3 References

List all the documents and other materials referenced in this document. This section is like the bibliography in a published book.

2. Actors

Identify users of the system and organize them into categories that represent actors. Actors that represent other systems, system maintenance and system operation also need to be identified.

Two criteria are useful when eliciting candidate actors: First, it should be possible to identify at least one user who can enact the candidate actor. Second, there should be a minimum overlap between the roles that instances of different actors play in relation to the system.

2.1 <Actor 1: Name>
Name the actor and briefly describe the role of the actor and what the actor uses the system for. Finding relevant names for the actors is important to convey the desired semantics. The brief description for the actor should outline its needs and responsibilities. An example, Actor 1: Buyer, follows:
A Buyer represents a person who is responsible for buying goods or services. This person may be an individual (i.e. not affiliated with a company) or someone within a business organization. The buyer of goods and services needs the Project Name system to send orders and pay invoices.

2.2 <Actor 2: Name>

Name the actor and briefly describe the role of the actor and what the actor uses the system for. Finding relevant names for the actors is important to convey the desired semantics. The brief description for the actor should outline its needs and responsibilities. A second example, Actor 2: Seller, follows:
A Seller represents a person who sells and delivers goods or services. The Seller uses the Project Name system to look for new orders and to send order confirmations, invoices and payment reminders.

2.3 <Actor 3: Name>

Name the actor and briefly describe the role of the actor and what the actor uses the system for. Finding relevant names for the actors is important to convey the desired semantics. The brief description for the actor should outline its needs and responsibilities. A third example, Actor 3: Accounting System, follows:

The Project Name system sends verifications of transactions to the Accounting System.
3. Use Cases
Use cases are identified through workshops with the customer and the system’s users. Each actor is analyzed one-by-one and candidate use cases are suggested for each. Some candidates won’t become use cases themselves, but will become parts of other use cases.

Interviews and storyboarding can be used to understand what use cases are needed. The actor typically needs use cases to support his work to create, change, track, remove, or study business objects, such as Orders and Accounts. Remember that a use case delivers an observable result that is of value to a particular actor.

3.1 <Use Case 1: Name>

The Use-case 1 section provides a detailed description of the subject use case. This information may be expressed in a table (see below), as narrative, as step-by-step prose, as statechart diagrams (see below) or a combination of two (typically tables, accompanied by statechart diagrams where warranted).
	Item
	Description

	Scenario Identifier
	Use identifier, e.g. B1 for “Basic scenario 1,” or A1 for “Administrative scenario 1.” This is used for traceability tracking

	Scenario Description
	Brief description of the use case
The use case Pay Invoice is used by a buyer to schedule invoice payments. The Pay Invoice use case then effects payment on the due date.

	Actors
	List actors that initiate or participate in this use case

	Pre-conditions
	List the conditions that must exist before this scenario can be started, e.g.

The buyer has received the goods or services ordered and at least one invoice from the system. The buyer now plans to schedule the invoice(s) for payment.

	Actions
	List functional requirements in terms of actions or services that define a basic path through this use case, e.g.

1. The buyer invokes the use case by beginning to browse the invoices received by the system. The system checks that the content of each invoice is consistent with order confirmations received earlier (as part of the Confirm Order use case) and somehow indicates this to the buyer. The order confirmation describes which items will be delivered, when, where, and at what price.

2. The buyer decides to schedule an invoice for payment by the bank, and the system generates a payment request to transfer money to the seller’s account. A buyer may not schedule the same invoice for payment twice.

3. Later, if there is enough money in the buyer’s account, a payment transaction is made on the scheduled date. During the transaction, money is transferred from the buyer’s account to the seller’s account, as described by the abstract use case Perform Transaction (which is used by Pay Invoice). The buyer and the seller are notified of the result of the transaction. The ban collects a fee for the transaction, which is withdrawn from the buyer’s account by the system.

	Exceptions
	List alternatives or exceptions from the basic use case path, e.g.
· In step 2, the buyer may instead ask the system to send an invoice rejection back to the seller.

· In step 3, if there is not enough money in the account, the use case will cancel the payment and notify the buyer.

	Post-conditions
	List conditions that must be met before the scenario can be completed, e.g.
The use case instance ends when the invoice has been paid or when the invoice payment was cancelled and no money was transferred.

	Special Requirements
	List non-functional requirements related to this use case, e.g.
When a buyer issues an invoice for payment, the system should respond with a verification of the result within 1.0 second in 90% of the cases. The time for the verification must never exceed 10.0 seconds, unless the network connection is broken (in which case the user should be notified).

	Includes
	Reference any other use cases that this scenario uses, e.g.
· Use Case 2: Perform Transaction

	Extends
	List any use case this scenario extends or builds upon

	Generalizes
	List any use case that this scenario is a generalization of

	Author
	Who contributed to the text

	Date
	

	Revised
	

[image: image1.png]schedule

Pay on due date

Involce Paid Invoice Gancelled

Figure 3.1: The statechart diagram for the Pay Invoice use case

Note that using statechart diagrams in a use case context can sometimes lead to large and complex diagrams that are hard to read and understand. Use these kinds of diagrams with care. Tabled descriptions, such as the example above, are often enough

3.2 <Use Case 2: Name>

The Use-case 1 section provides a detailed description of the subject use case. This information may be expressed in a table (see below), as narrative, or as step-by-step prose.
	Item
	Description

	Scenario Identifier
	<Use identifier, e.g. B1 for “Basic scenario 1,” or A1 for “Administrative scenario 1.” This is used for traceability tracking. >

	Scenario Description
	<Brief description of use case>

	Actors
	<List actors that initiate or participate in this use case>

	Pre-conditions
	<List the conditions that must exist before this scenario can be started>

	Actions
	<List functional requirements in terms of actions or services that define a basic path through this use case>

	Exceptions
	<List alternatives, deviations, or exceptions from the basic use case path>

	Post-conditions
	<List any conditions that must be met before the scenario can be completed>

	Special Requirements
	<List non-functional requirements related to this use case>

	Includes
	<Reference any other use cases that this scenario uses>

	Extends
	<List any use case this scenario extends or builds upon>

	Generalizes
	<List any use case that this scenario is a generalization of>

	Author
	<Who contributed to the text>

	Date
	

	Revised
	

4. Index

The index is optional according to the IEEE standard. If the document is made available in electronic form, readers can search for terms electronically.

5. Appendices

Include supporting detail that would be too distracting to include in the main body of the document.
5.1 Guidelines for Constructing Use Cases

5.1.1 General Approach

· The purpose is communication – use language appropriate to reader.

· Develop iteratively by walkthroughs to add detail and identify alternative paths.

· If there are alternative paths, initially pick the most likely paths.

· Each path through a use case is called a scenario.

· Brainstorm all of the functions of the solution.

5.1.2 Questions to Drive Brainstorming

· What functions will the actor want from the solution – what does the user want the solution to do?

· Does the solution store information?

· What actors will create, read, update, or delete information?

· Model other external systems (e.g., ERP, OS, etc) as an actor.

· Does the solution need to notify an external actor about internal changes?

· Are there external events the solution must know about?

5.1.3 Developing Scenarios

5.1.3.1 Step 1: Begin with Primary Scenarios

· Identify actors

· Identify action

· Establish flow of events for “normal” situation

· Resist temptation to get too detailed

· Define preconditions – assumed starting point

· Define post conditions – the state at which all paths end

· Explicitly note if a sequence can be changed without changing results

· Represent branching flows using If, Else statements

· Represent repeated events using For each…Next, or While…. end pseudocode

· May describe exceptions and alternative paths

5.1.3.2 Step 2: Define Secondary Scenarios

· Start with primary scenario

· Look for alternative paths and error conditions

· Go through each line or step and ask:

1. Is there some other action that could be taken (alternative scenario)?

2. Could something go wrong (error scenario)?

3. Is there some behavior that could happen at any time?

5.1.3.3 Step 3: Documenting Scenarios

1. Use Universal Modeling Language notation (stick figure and ovals)

2. Simplify diagram using:

a. “Uses” notation

b. “Extends” notation

c. “Generalizes” notation

3. Actor inheritance

5.1.3.4 Step 4: Define interfaces between solution and actors

5.1.3.5 Step 5: Document dynamic behavior of use case

· Activity diagrams (flow charts)

· State-diagrams

· Event-message

5.1.4 Sample Usage Scenario

Smart Card Enrollment Control Usage Scenario

The following scenario illustrates the use of the Smart Card Enrollment control by an administrator issuing for an organization. All methods and properties referenced are provided by the Smart Card Enrollment control.

1. The administrator obtains an enrollment agent certificate (also known as a signing certificate). The private key associated with this enrollment agent certificate is used to sign a PKCS #7 request; the PKCS #7 request, in turn, contains the user's PKCS #10 request (which is signed with the user's private key).

The administrator can use the Certificate Manager MMC snap-in to obtain an enrollment agent certificate. Note that although the administrator's enrollment agent certificate will be used to sign the certificate request, the (CA) will issue and sign the certificate that is stored on the smart card once enrollment has completed.

2. The administrator uses a machine that is running the Smart Card Enrollment Control; the machine must contain one or more smart card readers. (If the administrator's enrollment agent certificate is stored on a smart card, the machine must contain two smart card readers: one for reading the administrator's enrollment agent smart card certificate, and one for generating the user's smart card certificate).

3. The administrator sets the name of a certificate template to be used by calling the setCertTemplateName method. An example of a certificate template name is "User". (If the administrator wishes to determine the available certificate templates, the getCertTemplateCount method retrieves the number of available certificate templates, and the enumCertTemplateName method can be used to enumerate their names).

4. The administrator sets the name of a CA to be used to issue the certificate. This occurs by calling the setCAName method. (If the administrator wishes to determine the available CAs, the getCACount method returns the number of available CAs, and the enumCAName method can be used to enumerate their names).

5. The administrator sets the name of a Cryptographic Service Provider (CSP) to be used. This occurs by setting the CSPName property. (If the administrator wishes to determine the available CSPs, the CSPCount property contains the number of available CSPs and the enumCSPName method can be used to enumerate their names).

6. The administrator specifies a signing certificate to be used to sign the certificate request. This signing certificate is synonymous with the enrollment agent certificate obtained in Step 1. The selectSigningCertificate method invokes a user interface, allowing the administrator to choose the signing certificate. An alternative to using a user interface to select the signing certificate is to call setSigningCertificate. (Once a signing certificate has been specified, the getSigningCertificateName method can be called to retrieve the subject name of the certificate). If the administrator's signing certificate is on a smart card, the smart card must be placed in the smart card reader.

7. The administrator places the user's smart card in the smart card reader. (Note that if the administrator's signing certificate is on a smart card, there would be at least two smart card readers on the machine: one reader would contain the smart card representing the administrator's enrollment agent certificate, and the other would contain the smart card which is to be issued the user certificate).

8. The administrator specifies the name of the user to be issued the certificate. This can be done in one of two ways: (a) the administrator can invoke the Select User interface by calling the selectUserName method and choosing the user name, or (b) the administrator can call the setUserName method to specify the desired user name.

9. The administrator requests a certificate on behalf of the user by calling the ISCrdEnr::enroll method. The CA receiving the request will verify the administrator's signature on the PKCS #7 (as well as verifying that the administrator's enrollment agent certificate was acceptable for enrolling on behalf of a user). The CA will also verify the user's signature on the PKCS #10. If the request is successful, the resulting certificate is automatically placed on the smart card.

10. [Optional] The administrator can inspect the resulting certificate by calling the getEnrolledCertificateName method.

11. The administrator removes the user's smart card and issues it to the user.

12. The administrator calls the resetUser method, which clears the user's name and certificate from the Smart Card Enrollment control's memory, thereby preparing the control for the next user's certificate enrollment.

13. The administrator repeats steps 7 through 12 for the remaining users on whose behalf the administrator is enrolling for certificates. Optionally, the administrator can change the certificate template, CA, CSP or signing certificate prior to each certificate enrollment.

Usage_Scenarios.doc (04/30/09)
Page 1

